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Images are vulnerable to different kinds of distortions, such as blur, noise, blockiness etc, which all
degrade the image quality. Among the distorted images, out-of-focus blurred images are frequently-
encountered and occupy a large proportion. However, few efforts have been done to quality evaluation
for these images. In this paper, we devise a dedicated quality evaluation scheme to automatically infer
the quality of out-of-focus blurred images, which is named GPSQ (Gradient magnitude and Phase
congruency-based and Saliency-guided Quality model). In GPSQ, a pair of low-level features, including
gradient magnitude (GM) and phase congruency (PC), are extracted to characterize the image local blur-
riness. Then saliency detection is performed on the image to generate a corresponding saliency map.
Finally, we weight the local structure map with the saliency map to estimate the visual quality of the
out-of-focus blurred image. Experimental results demonstrate the proposed GPSQ delivers high consis-
tency with subjective evaluation results.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

The popularization of hand-held cameras makes the acquisition
of images much convenient nowadays. However, due to inappro-
priate camera settings or photographing in a casual manner, the
images thus acquired often suffer from a variety of distortions,
such as blur, noise, contrast distortion etc., which all degrade the
images’ quality. Among the distorted images, images with out-of-
focus blur are frequently-encountered and occupy a large propor-
tion. Hence, in this work, we put forward an objective quality
model dedicated to measuring the quality of the out-of-focus
blurred images. The objective quality assessment approach can
be applied to monitoring the image quality during acquisition or
cull the unacceptable images with out-of-focus blur.

In general, existing image quality assessment (IQA) approaches
can be classified into three classes, namely no reference (NR),
reduced reference (RR) and full reference (FR) metrics. The two
most representative FR models are probably the peak signal-to-
noise ratio (PSNR) and the structural similarity index (SSIM) [1].
PSNR measures the image quality through the energy of the resid-
ual of a distorted image against its associated reference one. While
SSIM infers the visual quality by comparing the similarity in struc-
tures. In recent years, to better model the HVS in quality assess-
ment, researchers have employed high level characteristics of the
HVS into the objective algorithm designment, such as visual sal-
iency. Representative works can be referred to in [2–5], where
[2,3] introduced saliency into IQA for algorithm establishment
while [4,5] analyzed important issues about the application of sal-
iency in IQA tasks.

The second category of IQA methods is the RR IQA methods
based on partial information or some representative features from
the reference image for quality estimation. The authors in [6] pro-
posed an information theoretic RR IQA algorithm that measures
the mean deviation between reference and projected distorted
images from the viewpoint of scaled entropies of wavelet coeffi-
cients. In [7], the authors designed a free-energy based distortion
metric (FEDM) based on the recent discovery of free-energy theory
in neuroscience. In [8], the authors constructed IQA model by com-
bining the merits of the human visual system (HVS), such as con-
trast sensitivity function, multi-scale geometric analysis, and the
Weber’s law of just noticeable difference.

However, in most cases the reference image is absent, then FR
and RR methods become both invalid. In this regard, NR IQA pro-
vides the only way to measure the image quality. The first type
of NR IQA approaches is general-purpose, which is designed to
handle images without knowing the distortion type in advance.
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These methods are usually developed in two steps, feature extrac-
tion followed by training a prediction module for quality evalua-
tion. Representative general-purpose NR methods contain
DIIVINE [9], BLIINDS-II [10], BRISQUE [11] and NFERM [12] etc.
The second type of NR methods is proposed to deal with images
with specific distortion, e.g., JPEG [13–16], blur [17], noise
[18,19] or contrast change [20,21] etc.

In this paper, our attention is focused on the quality assessment
of a special kind of distorted images, namely out-of-focus blurred
images. As we mentioned before, these images are frequently-
encountered in reality while specific quality evaluation methods
for these images are still limited. Certainly, the out-of-focus
blurred images can be assessed by the general-purpose NR meth-
ods due to their general QA ability for distorted images. However,
compared with the general-purpose methods, the specific blurri-
ness assessment methods are more pertinent to tackle this kind
of images. In literature, early attempts for blurriness estimation
concentrated on the image edges. For instance, the authors in
[17] proposed the blur metric based on the pair edge detectors in
vertical and horizontal orientations. Just noticeable blur (JNB)
was proposed by measuring the blur around the edges. In addition,
image blur can also be characterized by its spectral behaviors. An
efficient wavelet-based local and global image sharpness assess-
ment method (FISH) [22] was developed by calculating the Log-
energy of the coefficients in the DWT domain. In [23], the spectral
and spatial sharpness metric (S3) works in combining the mea-
surements of the total spatial variation and the slope of the magni-
tude spectrum. Although general-purpose NR methods and
blurriness assessment methods both have the capacity of assessing
the out-of-focus blurred images, these methods may become inef-
fective or insufficient as the real out-of-focus blur exhibits com-
plexity and irregularity over the image. The complexity and
irregularity mainly lie in that the position of the out-of-focus blur
is unpredictable and its intensity is also spatially variant, which
gives rise to challenges to existing IQA methods for accurately pre-
dicting the quality of out-of-focus blurred images. To tackle this,
we devise a quality assessment scheme dedicated to the out-of-
focus blurred images, which is named GPSQ (Gradient magnitude
and Phase congruency-based and Saliency-guided Quality model).
Since multi-domain features of the image can play complementary
roles in quality assessment [24–27], we extract two low-level fea-
tures GM and PC from the spatial and spectral domains respec-
tively and then combine them to comprehensively characterize
the image blurriness. Next we perform saliency detection on the
out-of-focus blurred image and get a corresponding saliency
map. Finally, we weight the localized structure map with the sal-
iency map to derive a single score which denotes the visual quality
of the out-of-focus blurred image. Considering chrominance infor-
mation can also affect human perception of the image quality, we
further extend GPSQ to GPSQc by incorporating the GMs of the
image chromatic components. Through extensive experiments,
we verify GPSQ/GPSQc works in high consistency with subjective
opinions on the image quality.

The remainder of this paper is arranged as follows: Section 2
illustrates the proposed scheme GPSQ in detail. Experimental
results and analyses are given in Section 3. At last, we make con-
clusions of this paper in Section 4.
2. Methodology

2.1. GM extraction

The HVS is largely adapted to extracting the structural informa-
tion from the input image scenes as the structures in the image
convey much critical information for the HVS to explain the input
visual signals [1]. Unfortunately, the introduction of out-of-focus
blur leads to structure degradation, which hampers the HVS from
interpreting the image normally and thus degrades the image
visual quality. To effectively capture the image local structures,
we calculate GM of the image, which can extract the image struc-
tures from the spatial domain [24]. Specifically, we firstly compute
the image gradients by convolving the image I with the Prewitt
operator along two orthogonal directions as:

GxðIÞ ¼ 1
3

1 0 �1
1 0 �1
1 0 �1

2
64

3
75� I ð1Þ

GyðIÞ ¼ 1
3

1 1 1
0 0 0
�1 �1 �1

2
64

3
75� I ð2Þ

where GyðIÞ and GxðIÞ respectively stand for the image gradients
along the vertical and horizontal directions, ‘‘�” denotes the convo-
lution operator. Then GM of I can be calculated as:

GM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

x þ G2
y

q
ð3Þ

where GM refers to GM of image I.
Fig. 1 shows the example of extracted GM images of the original

and the blurred images. To be specific, in Fig. 1, (a) is the original
image with no blur, (b) and (c) are blurred versions of (a) with
slight blur and heavy blur respectively. (d)–(f) are the correspond-
ing GM images of (a)–(c) respectively. In (g), we show the GM dis-
tributions of (a)–(c), where the red line refers to the GM
distribution of the original image and the blue and green lines
are for the slight blur image and heavy blur image respectively.
From Fig. 1, we can obtain the following findings. First, the struc-
tures in the image can be well captured by GM as shown in (d)–
(f). Second, when out-of-focus blur is introduced, GM of the image
will be affected and heavy blur will cause greater changes of GM
than the slight blur by comparing (e) and (f). This observation
can also be verified according to the GM distributions shown in
(g). Namely, the GM distributions of the blurred images in blue
and green lines are all deviated from that of the original image in
red line, while the distribution of the slight blur image is closer
to that of the original image than the distribution of the heavy blur
image. Therefore, GM can characterize the image blurriness
effectively.

2.2. PC extraction

Besides extracting the image structures in the spatial domain
with GM, we also consider the activities of structures in the fre-
quency domain of the image. In the light of PC theory, the structure
features can be perceived at those points where the Fourier compo-
nents take maximum values in phase [28–30]. Therefore, the PC
model offers us another perspective to extract structures of an
image. Moreover, compared to GM, PC is insensitive to the bright-
ness and contrast. Here, we adopt the approach proposed by Kovesi
[29] for PC computation. The specific computation of PC is given
below.

Given a 1-D signal s, we denote Me
n and Mo

n the even- and odd-
symmetric filters on scales n, which form a quadrature pair.
Responses of each quadrature pair to the signal will generate a
response vector at position j on scale
n : ½enðjÞ; onðjÞ� ¼ ½sðjÞ �Me

n; sðjÞ �Mo
n�, and the local amplitude on

scale n is AnðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
enðjÞ2 þ onðjÞ2

q
. Let FðjÞ ¼ P

nenðjÞ and

HðjÞ ¼ P
nonðjÞ, the PC can be computed as:



Fig. 1. The example GM and PC images and their distributions: (a)–(c) are the images with no blur, slight blur and heavy blur respectively. (d)–(f) are the corresponding
extracted GM images of (a)–(c). (g) gives the GM distribution. Likewise, (h)–(j) are the images with no blur, slight blur and heavy blur respectively. (k)–(m) are the
corresponding extracted PC images of (h)–(j). (n) shows the PC distribution.
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PCðjÞ ¼ UðjÞ
eþP

nAnðjÞ ð4Þ

where UðjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2ðjÞ þ H2ðjÞ

q
and e is a small positive constant for

avoiding division by zero. Usually, the spurious effect of noise
should be excluded for PC computation, namely:

PCðjÞ ¼ ðUðjÞ � TÞþ
eþP

nAnðjÞ ð5Þ

where T represents the total noise influence that should be
subtracted from UðjÞ; ð�Þþ denotes that the difference between the
functions is not permitted to become negative. With the definition
of 1-D PC, the 2-D PC at position j can be derived by integrating the
1-D PC from all orientations as:

PC2DðjÞ ¼
P

oðUoðjÞ � ToÞþ
eþP

o

P
nAnoðjÞ ð6Þ

where o denotes the index over orientations. At last, a sigmoid
weighting function is introduced into Eq. (6) to adjust the PC value
in each orientation as:

PC2DðjÞ ¼
P

oðWoðjÞðUoðjÞ � ToÞþÞ
eþP

o

P
nAnoðjÞ ð7Þ

where the weighting function WðjÞ is defined as:
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WðjÞ ¼ 1
1þ egðc�sðjÞÞ ð8Þ

where c is the ’cut-off’ value of the filter response spread, below
which PC values will be penalized, g is a gain factor which controls
the sharpness of the cut-off. The spread function of sðjÞ is given by:

sðjÞ ¼ 1
N

P
nAnðjÞ

eþ AmaxðjÞ ð9Þ

with N being the considered total number of scales, AmaxðjÞ the
amplitude of the filter pair which have maximum response at j.
Interested readers can refer to [29] for more information of PC com-
putation. Likewise, In Fig. 1, we show an example of the PC images
extracted from the original and blurred images respectively. Among
them, (h) is an original image without blur, (i) and (j) are the
corresponding images with slight blur and heavy blur respectively.
(k)–(m) are the extracted PC images of (h)–(j). The PC value distri-
butions of these three images are illustrated in (n). It is observed
from the PC images that PC can extract the structures in the images,
and PC value degrades as the blur degree increases, which proves PC
of the image can be used to indicate the blur level. Similarly, the PC
value distribution of the heavy blur image is more divergent from
that of the original image compared to the PC value distribution
of the slight blur image, as shown in (n).

2.3. Image quality estimation

With the extracted GM and PC of the out-of-focus blurred
image, we combine the GM and PC maps to get a localized struc-
ture map S as:

Sði; jÞ ¼ maxfGMði; jÞ=GMmax; PCði; jÞg ð10Þ

where ði; jÞ represents each position in S;GM and PC maps. As PC
values are within 0–1, we also normalize GM values to 0–1 by divid-
ing the GM values by GMmax which denotes the maximum value of
GM, here GMmax ¼ 255

ffiffiffi
2

p
. Then we take the maximum value of GM

and PC values to form S in that if anyone of GM and PC takes a larger
value in each position, we think this position in the image is an
structure feature point. Therefore, maximum combination of GM
and PC guarantees that we can extract the structures in the image
comprehensively. To illustrate this visually, we calculate GM and
PC of the same image. The results are shown in Fig. 2. As can be
observed, in the red rectangle area of (b), the edge of the tower can-
not be extracted clearly. This is because both sides of the edge have
similar luminance, namely in (a) the white cloud and the white
tower are hard to distinguish in luminance. Therefore, GM can’t
characterize this edge well. While PC is able to capture this edge
from the spectral domain. Similarly, in the yellow rectangle area
of (c), the fences have similar frequency behaviors, which make it
difficult for PC to extract the structures. On the contrary, the struc-
tures of the fences can be revealed by GM. If we take the maximum
value of GM and PC, we can obtain both the structures in the red
rectangle and yellow rectangle in the meantime, verified in (d).
Therefore, GM and PC can play complementary roles in structure
extraction so that maximum combination of GM and PC enables
us to extract the structures comprehensively. In the next, as stated
before, the out-of-focus blur may exist irregularly over the image,
which leads to inaccurate results of blurriness assessment, and thus
the strategy we take here is to apply saliency detection to the out-
of-focus blurred image towards emphasizing the regions that
attract more visual attention for quality assessment. Specifically,
we generate a corresponding saliency map of the out-of-focus
blurred image through saliency detection, denoted by SM. The lar-
ger values in SM means the co-located pixels in the out-of-focus
blurred image are more significant to the HVS. Then we weight
the localized structure map S with SM resulting in a localized qual-
ity map Q:

Qði; jÞ ¼ SMði; jÞ � Sði; jÞP
ði;jÞ2QSMði; jÞ ð11Þ

At last, we derive the quality score to evaluate the visual quality of
out-of-focus blurred images based on percentile pooling strategy,
which is widely adopted in IQA approaches [31,23,22]. Specifically,
we take the root mean square of the l% largest values in the local-
ized quality map Q to define the GPSQ index as follows:

GPSQ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
i;jð Þ2XQ

2 i; jð Þ
r

ð12Þ

where GPSQ gives the quality level of the out-of-focus blurred
image, X contains all the positions of the l% largest values in Q
and N counts the number of positions in X. In our implementation,
the saliency model Covsal [32] is employed for saliency prediction
and l is set to 20 as we suppose the least proportion for perceiving
quality is 1=5 [33]. It is noted that GPSQ belongs to NR methods.

2.4. Extension to color IQA

Till now, the GPSQ index is designed on the luminance channel
of the out-of-focus blurred image. Since the chrominance informa-
tion can also affect the HVS in quality evaluation of the distorted
images. Therefore, we define GPSQc by considering the chromi-
nance components of the image. Specifically, we convert the orig-
inal RGB color image into YIQ color image, where Y denotes the
luminance channel of the image, I and Q represent the chroma
channels of the image. The transformation from RGB color space
to YIQ color space can be implemented via:

Y

I

Q

2
64

3
75 ¼

0:299 0:587 0:114
0:596 �0:274 �0:322
0:211 �0:523 0:312

2
64

3
75

R

G

B

2
64

3
75 ð13Þ

Then we calculate GMs of I and Q components and form the local-
ized structure map Sc as:

Scði; jÞ ¼ maxfSði; jÞ;GMIði; jÞ=GMImax;GMQ ði; jÞ=GMQmaxg ð14Þ
where S refers to the structure map of the luminance channel
defined in Eq. (10), GMI and GMQ are the GM maps of the I and Q
channels respectively. The GM maps of I and Q are also divided
by their maximum values to be normalized to 0–1. Here, we do
not calculate PC maps of the color components as we find they can’t
bring performance improvement while cause much more computa-
tional time. Then the local quality map is generated as:

Qcði; jÞ ¼
SMði; jÞ � Scði; jÞP

ði;jÞ2Qc
SMði; jÞ ð15Þ

Finally, the GPSQc index is defined as:

GPSQc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
i;jð Þ2XQ

2
c i; jð Þ

r
ð16Þ

It is noted that the parameters forGPSQc are the sameas that of GPSQ.
For intuitive understanding of GPSQc, we show its flowchart in Fig. 3
clearly. As can be observed, given an out-of-focus blurred image, we
calculate GMY, PCY, GMI and GMQ of the input image respectively.
Then these four feature maps are combined to construct a localized
structure map. Meanwhile, we perform saliency detection on the
input out-of-focus blurred image and get a corresponding saliency
map which locally indicates visual importance of the image. With
the localized structure map and saliency map, we weight the struc-
ture map with the saliency map which leads to a localized quality
map. At last, the localized qualitymap is pooled to produce the qual-
ity of the whole out-of-focus blurred image.



Fig. 2. Illustration of the GM, PC and local structure S maps. (a) an example image, (b) GM map, (c) PC map, (d) S map.
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Fig. 3. The flowchart of the proposed GPSQc.
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3. Experiments

This section will validate the effectiveness of the proposed
method based on extensive experiments. Firstly, we introduce
the experimental protocol and the image databases serving as
the test bed for objective methods. Then we report the prediction
results of the objective methods and deliver necessary analysis.
Furthermore, some important issues about GPSQ will also be
discussed.

3.1. Experimental protocol

To estimate the prediction performance of the objective meth-
ods, we employ four commonly-adopted statistical indexes which
are Kendall’s rank correlation coefficient (KROCC), Spearman Rank
order Correlation coefficient (SROCC), root mean square error
(RMSE) and Pearson’s linear correlation coefficient (PLCC) respec-
tively. These four indexes are all calculated between the subjective
ratings and the objective scores given by the objective methods.
The KROCC and SROCC values indicate the prediction monotonicity
of the quality metric, PLCC reflects the prediction accuracy and
RMSE points out the prediction consistency. Therefore, these four
indexes demonstrate the prediction performance from different
aspects. A superior IQA metric is expected to achieve values close
to 1 in KROCC, SROCC and PLCC, while close to 0 in RMSE. As sug-
gested by VQEG [34], before computing PLCC and RMSE, the objec-
tive scores are needed to be mapped to subjective ratings through
nonlinear regression. Toward this end, we apply a logistic function
with five parameters as:

q zð Þ ¼ b1
1
2
� 1
1þ exp b2 � z� b3ð Þð Þ

� �
þ b4 � zþ b5 ð17Þ

with z and qðzÞ being the input objective score and the mapped
score. b1;b2 . . . b5are free parameters to be determined via the curve
fitting process. Then these four indexes are respectively calculated
as (Supposing N denotes the total number of the testing images):

SROCC ¼ 1� 6
NðN2 � 1Þ

XN
i¼1

d2
i ð18Þ
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where di represents the distance between the i-th image’s ranks in
objective and subjective scores.

KROCC ¼ 2ðNc � NdÞ
NðN � 1Þ ð19Þ

where Nc and Nd denote the number of concordant and discordant
pairs in the testing database.

PLCC ¼
PN

i¼1ðqi � �qÞ � ðsi � �sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðqi � �qÞ2 �PN

i¼1ðsi � �sÞ2
q ð20Þ

where si and �s are the i-th image’s subjective rating and the mean of
the overall si. qi and �q are the i-th image’s mapped objective score
through nonlinear regression and the mean value. The last perfor-
mance index RMSE is defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1
ðsi � qiÞ2

r
ð21Þ

where si and qi represent the subjective rating and mapped objec-
tive score respectively.

3.2. Testing image dataset

To the best of our knowledge, there are two real out-of-focus
blurred image databases which can be employed to test our
method. The first one is the out-of-focus blurred image dataset of
our earlier work in [35]. This dataset is composed of 150 images
with out-of-focus blur of different degrees. The images were
acquired by a single-lens camera. Then subjective test with
Single-stimulus (SS) method was performed on this image dataset
to collect subjective ratings for the images. Detailed information
about this image dataset can be referred to [35].

The second image database is the Blurred Image Database (BID)
[36]. BID contains 585 images which can be classified into five blur
cases, which are Unblurred, Out-of-focus, Simple Motion, Complex
Motion and Other respectively. In our test, we chose the Out-of-
focus class and the Other class which include the global and local-
ized out-of-focus blurred images. In Figs. 4, 5, we show some
example out-of-focus blurred images in our dataset and BID data-
base respectively. It can be observed that the real out-of-focus blur
in the image is complex and spatially variant.

3.3. Performance comparison

As reported in Tables 1 and 2, the prediction performance in
terms of KROCC, SROCC, RMSE and PLCC is given. Table 1 lists
the performance on our constructed out-of-focus blurred image
dataset and Table 2 lists the performance on the BID out-of-focus
blurred image database. The best performed method is marked in
boldface. As there are no reference images in these two databases
which can be referenced for quality evaluation, we compare our
designed model with 15 state-of-the-art NR quality models which
are BIQI [37], BRISQUE [11], DESIQUE [38], DIIVINE [9], NFERM
[12], NIQE [39], SISBLIM [40], BQMS [41], LPSI [42], CPBD [43],
ARISMC [31], FISH [22], JNB [44], LPC [45] and S3 [23]. For clear
comparison, we classify the competing methods into two types.
The first type belongs to general-purpose NR IQA methods, which
includes BIQI, BRISQUE, DESIQUE, DIIVINE, NFERM, NIQE, SISBLIM,
BQMS and LPSI. The second type contains the representative meth-
ods specific to image blurriness assessment, which are CPBD,
ARISMC, FISH, JNB, LPC and S3. As can be seen in Table 1, the first
type general-purpose NR methods can assess the quality of the
out-of-focus blurred images moderately due to their general QA
ability for distorted images. Compared with the general-purpose
methods, the specific blurriness assessment methods achieve bet-
ter prediction results. This can be verified by the observation that
most of the SROCC values of the blurriness assessment methods
are higher than 0.7. This is not hard to understand that blurriness
assessment methods possess the speciality for blurred images. It is
worthy noting that our proposed GPSQ or GPSQc earns superior
prediction performance to all of the competing methods and out-
performs them remarkably. In addition, GPSQc delivers better per-
formance than GPSQ, which verifies the predicting quality can be
further enhanced by taking color information into consideration.

Take a look at Table 2, we notice that the prediction perfor-
mance decreases a lot for most of the objective methods. This
can be mainly attributed to three points. First, the resolution of
the images in BID out-of-focus blur database is varied, which can
be viewed in Fig. 5 where the resolution of images in the last
row is different from that of the images in the first three rows.
While the resolution of the image indeed has an effect on its visual
quality [46]. The second point lies in that there possibly exists
other kinds of distortion except out-of-focus blur in the image,
such as motion blur. This will also affect the prediction accuracy
of the objective methods. The last point owes to the fact that other
factors can still influence subjective ratings for the visual quality.
For instance, the image in the middle of the second row in Fig. 5
has low luminance, which disturbs subjective judgements of the
image visual quality. In a word, there are other factors except
out-of-focus blur which can also affect the quality of the image.
While in the construction of our out-of-focus blurred image data-
set, we eliminated the influence of other factors on the image qual-
ity as far as possible. To illustrate, we employed a tripod when
acquiring the images which can eliminate camera-shaken induced
blur greatly. Besides, the resolution of images in our dataset is also
fixed. Although the prediction performance of the methods
decreases on the BID out-of-focus blurred database, our proposed
GPSQ/GPSQc still performs the best among all the methods.

3.4. Examination of GM and PC in GPSQ

In Section 2.3, we analyzed GM and PC can play complementary
roles in structure extraction and the maximum combination of
them makes us fully extract the structures. Hence, combination
of GM and PC is expected to better characterize the image blurri-
ness so that the final quality prediction performance should be bet-
ter than anyone of GM and PC. To verify this, we inspect the
prediction performance of structure extraction with GM, PC and
their combination respectively. Specifically, in GPSQ, we calculated
GM, PC and their combination and examined the corresponding
prediction performance on our out-of-focus blurred image dataset.
In this process, other operations in GPSQ are all fixed. The experi-
mental results are tabulated in Table 3, in which ‘‘SE” refers to
structure extraction, the best performance is emphasized in bold-
face. From this table, we notice that the prediction accuracy of
GM and PC is comparative as the values of SROCC, KROCC, PLCC
and RMSE are very close. This indicates only calculating GM or
PC for structure extraction leads to comparative prediction perfor-
mance. While the performance of the combination of GM and PC is
obviously better than anyone of them, which verifies the combina-
tion of GM and PC can noticeably improve the prediction perfor-
mance. As GM and PC can extract the image structures
complementarily, the maximum combination of them can fully
extract the structures, which accounts for the prediction perfor-
mance is superior to anyone of them.

3.5. The impact of saliency detection on prediction performance

As we stated before, the complexity and irregularity of real out-
of-focus blur give rise to difficulties for accurate evaluating the
visual quality of the out-of-focus blurred images. In this regard,



Fig. 4. Example out-of-focus blurred images in out-of-focus blurred image dataset.
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we take the strategy of saliency prediction on the blurred images
and emphasize the visually important regions for quality evalua-
tion accordingly. Therefore, we want to testify the effectiveness
of saliency prediction in quality estimation. In this experiment,
without loss of generality, we tested 8 mainstream saliency models
for saliency detection, which are SWD [47], Covsal [32], GBVS [48],
Itti [49], RCSS [50], RARE [51], FES [52] and IS [53]. In addition, we
also included blurriness assessment methods for comparison,
which are FISH, LPC and S3 as these three methods also produce
a localized sharpness map of the blurred image that we can weight
with saliency map like GPSQ. The manner of weighting the local-
ized sharpness map with saliency map is kept the same as GPSQ
in Eq. (11). The pooling operation to obtain the final quality is also
fixed as described in Eq. (12). All the experiments were performed
on our out-of-focus blurred image dataset and we list the experi-
mental results in Table 4. The prediction performance is evaluated
in SROCC and the best one for each sharpness method in each col-
umn is stressed with boldface. ‘‘None” means we do not perform
saliency detection and the quality is obtained by directly pooling
the localized sharpness map. From the observation of Table 4, we
can find that for each sharpness assessment method, the SROCC
values of SWD, Covsal, GBVS, Itti and RCSS are consistently better
than that of ‘‘None”, which verifies saliency detection is an effec-
tive strategy to deal with the complexity and irregularity of the
out-of-focus blur in quality evaluation. However, the performance
of RARE, FES and IS is still below that of ‘‘None”, which can be
attributed to that the prediction accuracy of these saliency models
is not good enough to the out-of-focus blurred images. To account
for this, we show an example of saliency prediction results in Fig. 6.
It is observed that the saliency area generated by RARE focuses on
the flowers in the background, which will mislead the quality eval-
uation result. On the contrary, Covsal produces more accurate
result and will benefit the quality evaluation.By comparing each
row, we notice that our proposed method GPSQ achieves the best
performance in most cases, which can be owed to the superiority
of GM and PC for characterizing the blurriness of the out-of-
focus blurred image. As SROCC of Covsal attains the maximum
value, we employ Covsal as the default saliency model in GPSQ
experimentally.

3.6. Complexity analysis

Time complexity is an important attribute for the objective IQA
methods. Therefore, we examine the computational complexity
and time cost of all the competing methods. The experiments were
performed on a Thinkpad X220 notebook with a 2.5 GHz CPU and
4G RAM. The software platform is Matlab R2012a. All the objective
methods were tested on an image of 480� 720 from our out-of-
focus blurred image dataset and their running time was recorded
respectively. The experimental results are summarized in Table 5,



Fig. 5. Example out-of-focus blurred images in BID database.

Table 1
Overall prediction performance on our out-of-focus blurred image dataset.

Methods SROCC KROCC PLCC RMSE

BIQI [37] 0.2580 0.1740 0.2241 1.2830
BRISQUE [11] 0.7361 0.5367 0.7263 0.9049
DESIQUE [38] 0.6899 0.4919 0.6811 0.9639
DIIVINE [9] 0.5865 0.4149 0.6475 1.0033
NFERM [12] 0.7756 0.5771 0.7529 0.8665
NIQE [39] 0.0906 0.0777 0.4693 1.1625
SISBLIM [40] 0.8554 0.6734 0.8155 0.7620
BQMS [41] 0.0455 0.0195 0.4161 1.1971
LPSI [42] 0.6590 0.4781 0.6957 0.9457

CPBD [43] 0.7880 0.6009 0.7902 0.8068
ARISMC [31] 0.5356 0.3754 0.6932 0.9489
FISH [22] 0.8545 0.6665 0.8257 0.7426
JNB [44] 0.7369 0.5506 0.7306 0.8989
LPC [45] 0.8568 0.6620 0.8447 0.7047
S3 [23] 0.8641 0.6702 0.8431 0.7079
GPSQ (Pro.) 0.9238 0.7515 0.9341 0.4700
GPSQc (Pro.) 0.9237 0.7522 0.9344 0.4689
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Table 2
Overall prediction performance on BID out-of-focus blurred image database.

Methods SROCC KROCC PLCC RMSE

BIQI [37] 0.4470 0.3077 0.5308 0.9100
BRISQUE [11] 0.0592 0.0417 0.3178 1.0181
DESIQUE [38] 0.1019 0.0720 0.1235 1.0656
DIIVINE [9] 0.2406 0.1647 0.2531 1.0388
NFERM [12] 0.2784 0.1846 0.3336 1.0123
NIQE [39] 0.3239 0.2147 0.3760 0.9950
SISBLIM [40] 0.0552 0.0324 0.3440 1.0083
BQMS [41] 0.1034 0.0667 0.1053 1.0678
LPSI [42] 0.2229 0.1495 0.3111 1.0205

CPBD [43] 0.1640 0.1114 0.2712 1.0335
ARISMC [31] 0.1446 0.0953 0.1803 1.0562
FISH [22] 0.3097 0.2110 0.3282 1.0143
JNB [44] 0.0945 0.0639 0.2585 1.0373
LPC [45] 0.4280 0.2946 0.5147 0.9206
S3 [23] 0.3795 0.2575 0.4221 0.9734
GPSQ (Pro.) 0.4978 0.3434 0.5564 0.8922
GPSQc (Pro.) 0.4979 0.3436 0.5571 0.8918

Table 3
Prediction performance comparison of GM, PC and their combination.

SE SROCC KROCC PLCC RMSE

GM 0.8996 0.7227 0.9126 0.5382
PC 0.8962 0.7184 0.9090 0.5488
Combination 0.9238 0.7515 0.9341 0.4700

Table 4
SROCC values of different saliency models.

Saliency FISH LPC S3 GPSQ

None 0.8545 0.8568 0.8641 0.8725
SWD [47] 0.9030 0.8739 0.8940 0.9091
Covsal [32] 0.8994 0.8710 0.8876 0.9238
GBVS [48] 0.8842 0.8811 0.8773 0.9075
Itti [49] 0.8899 0.8811 0.8765 0.9054
RCSS [50] 0.8740 0.9009 0.8654 0.9059
RARE [51] 0.8465 0.8470 0.8012 0.8590
FES [52] 0.8060 0.8151 0.7491 0.8195
IS [53] 0.8601 0.7483 0.8149 0.7764
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where N is the number of pixels in the image, C represents con-
stant, d is the window size, W and H represent the width and
height of the image, m is the DNT neighborhood size, b is the num-
ber of 2D histogram bin and k is the patch size. It can be observed
that NFERM and BQMS spend the most time. This is because the AR
prediction module in them is very time consuming. Since LPSI and
FISH work in constant computational complexity, they can evalu-
ate the image quality fastest. The computational time of our pro-
posed method GPSQ/GPSQc exceeds 15 s as saliency detection
takes a lot of time. Therefore, we envision that the speed of
Fig. 6. Example of saliency detection results. (a) an example image. (b) sa
GPSQ/GPSQc can be further improved by embedding more efficient
saliency detection methods in the future.
4. Conclusion

In this paper, we have paid our attention to the visual quality
assessment of images that suffer from out-of-focus blur. In detail,
a dedicated quality assessment scheme, named GPSQ (Gradient
magnitude and Phase congruency-based and Saliency-guided
Quality model) was proposed to this end. In GPSQ, two low-level
features from the spatial and spectral domain of the image, namely
GM and PC were extracted and combined to characterize the image
blurriness locally. Then saliency detection was performed on the
out-of-focus blurred image to emphasize the visual important
regions. At last, we derived a single quality score by pooling the
localized quality map. We also extended GPSQ to GPSQc by incor-
porating the image chromatic information into GPSQ. Experimen-
tal results manifest that our proposed GPSQ/GPSQc acquires high
correlation with subjective ratings for the quality of the out-of-
focus blurred images.

Future works can be extended in two aspects: first, as deep
learning reveals outstanding ability in computer vision tasks, we
can design more accurate methods via deep learning for precise
quality assessment of the out-of-focus blurred images. There are
two directions we can make our effort on. The one is to develop
quality assessment methods via deep learning. The other one is
to employ deep learning in developing saliency detection methods
to accurately predict what humans care about as we demonstrate
accurate saliency maps can also benefit quality evaluation. Second,
for a real image, there are still some other factors that will affect its
visual quality except out-of-focus blur, such as jpeg compression,
noise, contrast change etc. In this work, we have only studied on
liency map generated by Covsal. (c) saliency map generated by RARE.



Table 5
Computational complexity and running time comparison.

Methods Time (s) Complexity

BIQI [37] 0.36 OðNÞ
BRISQUE [11] 0.22 Oðd2NÞ
DESIQUE [38] 0.47 Oðd2NÞ
DIIVINE [9] 26.43 OðNðlogN þm2 þ N þ 392bÞÞ
NFERM [12] 76.55 Oðd2N logNÞ
NIQE [39] 0.46 Oðd2NÞ
SISBLIM [40] 4.51 Oðd2N logN=16Þ
BQMS [41] 77.68 Oðd2N logNÞ
LPSI [42] 0.07 OðCÞ
CPBD [43] 0.84 OðNÞ
ARISMC [31] 35.35 Oðd2N logNÞ
FISH [22] 0.08 OðCÞ
JNB [44] 0.79 OðNÞ
LPC [45] 1.67 OðNÞ
S3 [23] 39.17 OðN � 9ðW þ HÞ þ 81Þ
GPSQ (Pro.) 16.49 Oð180N=k2Þ
GPSQc (Pro.) 16.54 Oð180N=k2Þ
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the factor of out-of-focus blur and the occasion of multiple factors
is still not concerned. From the experiments we know that the pre-
diction accuracy of our method on BID out-of-focus blurred image
database is still far from ideal. Therefore, image quality evaluation
under the influence of multiple factors becomes another problem
worth studying.
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